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IS the non-dipole magnetic field random?
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SUMMARY

Statistical modelling of the Earth's magnetic field B has a long history (see e.g.

McDonald 1957; Gubbins 1982; McLeod 1986; Constable & Parker 1988). In particular,

the spherical harmonic coefficients of scalar fields derived from B can be treated as

Gaussian random variables (Constable & Parker 1988). In this paper, we give examples

of highly organized fields whose spherical harmonic coefficients pass tests for indepen-

dent Gaussian random variables. The fact that coefficients at some depth may be

usefully summarized as independent samples from a normal distribution need not

imply that there really is some physical, random process at that depth. In fact, the field

can be extremely structured and still be regarded for some purposes as random. In this

paper we examined the radial magnetic field Br produced by the core, but the results

apply to any scalar field on the core-mantle boundary (CMB) which determines B

outside the CMB.
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1 INTRODUCTION

In the absence of perfect and complete magnetic data, research-

ers have sought to develop statistical models of B in order to

make predictions or test assumptions about B. The radial

magnetic field on a sphere S(r) of radius r can be expressed as

an infinite sum of spherical harmonic functions:

l-_ m-/

B,(r) = Z _ ./"['(r)Xr(t), (1)
l--I m = I

where

1 (l-m)?]t'2Xr(i')= 2(21+ )_J P'['(cosO)cosm2, m>0, (2)

=[- + j(l--rn)?] 1/2Xi- m(_.) n2(21 1 __ PT'(cos0) sinm2,
k (t + rnj_ j

m>0,

(3)

(4)X°(f ")= (21 + 1)''2 PT'(cos 0),

1
-,u ) _, (Ft -1) _. (5)p,d,(it)=9_?(1 2 ,,.'2 _t +,, 2

Here t is the unit vector with colatitude 0 and longitude 2.

If b is the radius of the Earth, surface and satellite measure-

ments give f_"(b) for 1 _< I < L, where L may be as high as 40

or 50 (Schmitz, Meyer & Cain 1989; Cain et al. 1989a}.

However, the data strongly suggest (Langel & Estes 1982;

Cain et al. 1989b) that, for the B observed on S(b), the f_(h)

come mostly from the crust if 1 > 15 and mostly from the core

if 1 < 1 < 12. In the latter range of I, the pre-Maxwell equations

imply that

f'F(a) = (b/a) '+ 2fT'(b), (6)

where S(a) is the CMB. The axial dipole is well-known to

be anomalously large, but for 2<1<12 and -l<_m<_l,

and for various p and q, subsets of the products

(I + 1)P/2(21 + 1)_/2f_'(a) with restricted ranges of I have been

shown to pass the Kolmogorov Smirnov (K-S) test (Kendall

& Stuart 1979) for independent identically distributed (i.i.d.)
Gaussian random variables with mean 0. The classical K S

test must be slightly modified because the common variance

of the f_'(a) is inferred from the sample (Mason & Bell 1986).
Constable & Parker (1988) gave the first such result, with

p = - l, q = 2, and 2 < l < 8. Walker & Backus (1993) obtained

the same result for p = 1, 1 < q _<6 and 2 _< I < 10. The present

authors have verified that the coefficients f'_(a) derived from

Langel & Estes (1985) pass the K-S test if2 _<l __ 12. For these
coefficients, the maximum separation between the empirical

cumulative distribution function and the Gaussian distribution

function with mean 0 and sample variance is 0.0785. The

probability that a separation this large will occur by chance

is 0.2125.

This paper gives examples to show that the passing of such

tests for randomness need not mean that B, on S(a) looks

random in any intuitive sense. Thus one cannot infer from

such results alone that the physical process producing B,

is physically random. On the positive side, this result sug-

gests that much of the statistical apparatus for treating
random fields can be applied to B,, even if it does not look

particularly random.
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Figure 1. The empirical cumulative distribution function of the coefficients f?(a) with 2 < l < 12 produced by a core spot with strength K at 90
colatitude and 0_'longitude (solid line). Also shown is the Gaussian cumulative distribution function with the same variance and mean 0 (dashed
line). The maximum deviation between these two curves is 0.3727, and the probability that a deviation at least this large will occur by chance if
the core spot coefficients really are drawn at random from an i.i.d, mean 0 Gaussian population is less than 10 s.
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Figure 2. The empirical cumulative distribution function of the coefficients f?(a) with 2 < l < 12 produced by a core spot with strength K at 72"
colatitude and 229° longitude (solid line). Also shown is the Gaussian cumulative distribution function (dashed line). The maximum deviation
between these two curves is 0.0544 and the probability that a deviation at least this large will occur by chance if the core spot coefficients really
are drawn at random from an i.i.d, mean 0 Gaussian population is 0.6274.
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Figure 3. Hammer Aitoff equal-area plot of the CMB centred on the Greenwich meridian. Core spots in the grey area permit rejection at the

5 per cent significance level of the hypothesis that their coefficients fT'la) are i.id. Gaussian with mean 0. The test is Kolmogorov-Smirnov, and is

confined to the 165 spot coefficients with 2 _<l< 12 and -I _<m < l.

Figure 4. Hammer Aitoff equal-area plot of the CMB centred on the Greenwich meridian. Core spots in the grey area permit rejection at the

5 per cent significance level of the hypothesis that their coefficients fT'(a) are i.i.d. Gaussian with mean 0. The test is Kolmogorov Smirnov, and is
confined to the 957 spot coefficients with 2 _</ < 30 and --l < m < I.

2 CORE SPOT

For our example of a non-random field which passes tests for

randomness, we make use of the spherical Dirac delta function

6it, _), defined by the requirement that

6(t, _,) = 0 if _ ¢ ._, (7)

and

s_ dA(_)f(t, _) = 4n. (8)

We define a core spot with strength K at a_ on S(a) by

requiring that for all at on S(a)

B,(at) = K [,6(f', g) -- 1], (9)

where K is a constant with units of magnetic field strength.

With this definition, the net flux of B, through S(a) is 0.

Multiplying both sides of eq. (9) by XT'(t) and integrating over

the unit sphere gives the spherical harmonic coefficients of the

core spot at ag:

fT'(a) = KXT'(g). (10)

Many choices of core-spot location yield harmonic

coefficients for which it is easy to reject the hypothesis that

they are i.i.d. Gaussian random variables. Fig. l shows the

empirical cumulative distribution function of the coefficients

fT'(a) (2 _<1 _< 12) generated by a core spot at 90 ° colatitude

and 0' longitude. Also shown is the theoretical cumulative
distribution with mean 0 and variance calculated from the

coefficients. The maximum separation between the curves is

0.3727, and the K-S test gives a probability of less than l0 -s

that separation this large would occur by chance. However, as
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Figure 5. Hammer-Aitoff equal-area plot of the CMB centred on the Greenwich meridian. Core spots in the grey area permit rejection at the

5 per cent significance level of the hypothesis that their coefficients fT'(a) are i.i.d. Gaussian with mean 0. The test is Kotmogorov-Smirnov, and is
confined to the 3717 spot coefficients with 2 < l < 60 and - l < m < I.

I t l 70 80 90 100_'0 20 30 40 50 60
L

Figure 6. Fraction F(L) of 1000 randomly chosen core spots whose coefficients fT(a) look Gaussian when we test only the L2 + 2L - 3 coefficients

for which 2 _<1_<L and -I< m < I. The spot coefficients are deemed to "look Gaussian' if at the 5 per cent significance level the modified
Kolomogorov-Smirnov test fails to reject the hypothesis that those coefficients are drawn independently from a Gaussian population with mean
0 and sample second moment. Probabilities for this plot were calculated using asymptotic formulas from Mason & Bell (1986).

shown by Fig. 2, a different choice of core-spot location yields

coefficients fT'(a) that pass the K-S test for i.i.d. Gaussian

random variables. Fig. 3 is a Hammer-Aitoffequal-area projec-

tion of the CMB. Areas shaded in grey correspond to core-

spot locations where, at the 5 per cent significance level, one

can reject the hypothesis that the coefficients f'f(a) produced

by the core spot are i.i.d. Gaussian random variables. Most

locations produce coefficients that cannot be rejected as i.i.d.

Gaussian random variables in this way.

For mathematical completeness, we have extended our calcu-

lations beyond l= 12, into the range of harmonic degrees I

where the core is not 'visible' at the surface of the Earth.

Although the fraction of core-spots where the hypothesis of

i.i.d. Gaussian variables can be rejected increases with har-

monic degree, there are still many core spots for which the

hypothesis cannot be rejected (see Figs 4 and 5). Finally, Fig. 6

shows the percentage of core spots for which the hypothesis

of i.i.d. Gaussian random variables can be rejected at the
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5 per cent significance level as a function of maximum harmonic

degree. As might be expected, the percentage tends to zero as

the maximum harmonic degree increases. A large percentage

of core spots produce coefficients 2 < I < 30 that pass the K S

test (Figs 4 and 6).

3 CONCLUSIONS

Very structured fields can have spherical harmonic coefficients

that pass the K-S test for harmonic degrees 2 <l< 60. This

fact extends the usefulness of statistical models to some highly

structured fields, but it means that tests of normality over a

finite range of harmonic degrees cannot assure the absence of

coherent structure.
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